O.P.Code:23ME0304	R23	H.T.No.		
-------------------	-----	---------	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech.II Year I Semester Regular Examinations February-2025 MECHANICS OF SOLIDS

(Machanical Engineering)

	(Mechanical Engineering)				
Time:	ne: 3 Hours Ma		ax. Marks: 70		
	<u>PART-A</u>				
	(Answer all the Questions $10 \times 2 = 20$ Marks)				
1	a Define strength and stiffness.	CO ₁	L2	2M	
	b State strain energy.	CO ₁	L1	2M	
	c What is meant by cantilever beam.	CO ₂	L1	2M	
	d Define shear force and bending moment at a section.	CO ₂	L1	2M	
	e State the theory of simple bending.	CO ₃	L2	2M	
	f Define shear stress distribution.	CO ₃	L1	2M	
	g Define deflection of beam.	CO ₄	L1	2M	
	h Write Torsion equation.	CO4	L1	2M	
	i What are the stress developed in the cylinders under pressure.	CO ₅	L2	2M	
	j Define thin and thick cylinder.	CO ₅	L1	2M	
	PART-B				
	(Answer all Five Units $5 \times 10 = 50 \text{ Marks}$)				
	UNIT-I				
2	a Define stress and strain. Explain different types of stresses and strains.	CO ₁	L1	5M	
	b Draw and explain Stress-strain curve for a mild steel bar.	CO ₁	L2	5M	
	OR				
3	a A rod is 2 m long at a temperature of 10°C. Find the expansion of the	CO ₁	L3	5M	
	rod when the temperature is raised to 80°C. If this expansion is				
	prevented,				
	find the stress induced in the material of the rod. Take $E = 1.0 x$				
	10^5MN/m^2 and $\alpha = 0.000012$ per degree centigrade.				
	b A steel rod of 3 cm diameter and 5 m long is connected to two grips and	CO ₁	L3	5M	
	the rod is maintained at a temperature of 95°C. Determine the stress and				
	pull exerted when the temperature falls to 30°C, if				
	(i) the ends do not yield, and				
	(ii) the ends yield by 0.12 cm.				
	Take E = $2 \times 10^5 \text{ MN/m}^2$ and $\alpha = 12 \times 10^{-6} / {}^{0}\text{C}$				
	UNIT-II				
4	A cantilever beam of length 3 m carries a uniformly distributed load of	CO ₁	L3	10M	
	1.5 kN/m run over a length of 2 m from the free end. Draw SFD and				
	BMD for the beam.				
_	OR	~~.			
5	A cantilever of length 4.0 m carries a gradually varying load, zero at the	CO ₁	L3	10 M	
	free end to 2kN/m at the fixed end. Draw the S.F and B.M diagram .for				
	the beam				
	UNIT-III				
6	A rectangular beam 300 mm deep is simply supported over a span of 4	CO ₁	L3	10M	
	metres. Determine the uniformly distributed load per metre which the				
	beam may carry, if the bending stress should not exceed 120				
	$N/mm2.Take I = 8 \times 10^6 mm^4$				
	OR				

7		A rectangular beam 100 mm wide and 250 mm deep is subjected to a maximum shear force of 50 kN. Determine: (i) Average shear stress, (ii) Maximum shear stress, and (iii) Shear stress at a distance of 25 mm above the neutral axis.	CO1	L3	1ÒM
8		A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a uniformly distributed load of 9KN/m run over the entire span of 5 m. If the value of E for the beam material is 1 x 104 N/mm2, find:	CO1	L3	10M
		(i) The slope at the supports and (ii) Maximum deflection. OR			
9		A solid steel shaft has to transmit 75 KW at 200 rpm. Taking allowable shear stress as 70 N/mm2, find suitable diameter for the shaft, if the maximum torque transmitted at each revolution exceeds the mean by 30%.	CO1	L3	10M
		UNIT-V			
10	a	Derive expression for circumferential stress in thin cylinder.	CO ₅	L3	5M
	b	an internal fluid pressure of 1.2 N/mm ² . Determine: (i) Longitudinal stress developed in the pipe, and	CO5	L3	5,
		ii) Circumferential stress developed in the pipe. OR			
11	a	A vessel in the shape of a spherical shell of 1.20 m internal diameter and 12 mm. shell thickness is subjected to pressure of 1.6 N/mm ² Determine the stress induced in the material of the vessel.	CO5	L3	5M
	b	A spherical vessel 1.5 m diameter is subjected to an internal pressure of 2 N/mm ² . Find the thickness of the plate required if maximum stress is not to exceed 150 N/mm ² and joint efficiency is 75%.	CO5	L3	5M
		*** FND ***			